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We present Kaleido, a family of generative models designed for photorealistic, unified object- and
scene-level neural rendering. Kaleido operates on the principle that 3D can be regarded as a specialised
sub-domain of video, expressed purely as a sequence-to-sequence image synthesis task. Through
a systemic study of scaling sequence-to-sequence generative neural rendering, we introduce key
architectural innovations that enable our model to: i) perform generative view synthesis without
explicit 3D representations; ii) generate any number of 6-DoF target views conditioned on any number
of reference views via a masked autoregressive framework; and iii) seamlessly unify 3D and video
modelling within a single decoder-only rectified flow transformer. Within this unified framework,
Kaleido leverages large-scale video data for pre-training, which significantly improves spatial consis-
tency and reduces reliance on scarce, camera-labelled 3D datasets — all without any architectural
modifications. Kaleido sets a new state-of-the-art on a range of view synthesis benchmarks. Its
zero-shot performance substantially outperforms other generative methods in few-view settings, and,
for the first time, matches the quality of per-scene optimisation methods in many-view settings.
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Figure 1 Kaleido is a generative rendering engine that can synthesise any number of photorealistic novel views across
diverse artistic styles from any number of reference images (white boxes) with arbitrary 6-DoF camera poses.
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1 Introduction

Rendering and view synthesis are foundational to 3D computer vision and graphics, driving applications
across virtual reality, cinematic effects, robotics and autonomous driving. By allowing a scene to be rendered
from arbitrary viewpoints based on a limited set of reference views, view synthesis mimics the adaptability of
human vision — the ability to construct and reconstruct a coherent 3D understanding of our surroundings.
While deep learning, fuelled by massive datasets and scalable architecture designs, has achieved remarkable
success in language modelling and 2D vision, its progress in 3D vision for general-purpose rendering has been
comparatively slow. We argue this stems from two persistent and interconnected bottlenecks:

1. A Fragmented Landscape of 3D Representations. 3D vision lacks a consensus on the right 3D representation,
with methods spanning explicit structures like voxels (Wu et al., 2015) and point clouds (Qi et al.,
2017; Guo et al., 2020) to implicit ones like neural fields (Mildenhall et al., 2020; Xie et al., 2022). This
fragmentation has prevented the focused, collective effort required to scale a powerful architecture for
any single representation, as development remains divided across incompatible data formats.

2. The High Cost of 3D Data. 3D datasets are scarce and difficult to obtain primarily because their creation
is guided by the principle of strict 3D consistency. Achieving this level of precision requires either
hand-crafting 3D synthetic object meshes (Deitke et al., 2023b,a) or employing bundle adjustment and
global alignments (Hartley and Zisserman, 2003) for slow multi-view camera labelling, making the
data acquisition process slow, costly, and fundamentally difficult to scale.

As a direct consequence of these challenges, the 3D vision community has yet to converge on a scalable
paradigm for 3Dmodelling. The combination of fragmented research efforts and restrictive data requirements
has prevented the kind of focused, large-scale investment that enabled the dramatic architectural scaling and
performance gains seen in language and 2D vision.
We believe these limitations, taken together, point to a fundamental oversight:

3D perception is not a geometric problem, but a form of visual common sense.

The human ability to perceive 3D structure emerges from extensive observation of the world, not from
maintaining a precise 3D model in the mind. For example, humans can interpret 3D geometry in optical
illusions (e.g. in M.C. Escher’s impossible structures and the Ponzo illusion), without having a physically
accurate 3D representation or even a correct sense of depth. Accordingly, we argue that an ideal rendering
system should not aim to explicitly model perfect geometric consistency, but instead to learn an implicit representation
by capturing the statistical patterns of the extensive visual experience of the world.
Building on this insight, we introduce Kaleido, a scalable architecture for generative neural rendering. We
design Kaleido as a type of spatial generative model that does not encode any explicit 3D structures. Instead,
Kaleido inherits spatial perception and visual common sense directly from large-scale video data, purely
in a data-driven way, similar to how modern large language models acquire textual common sense from
large-scale corpora without relying on explicit linguistic rules. This leads to our central hypothesis, inspired
by the success of domain-specific fine-tuning in pre-trained language models (e.g., coding in Roziere et al.
(2023); Anil et al. (2023); Chen et al. (2021)), we believe that a powerful general-purpose rendering model
can be created by treating 3D as a specialised sub-domain of video. To put it simply,

We observed large-scale corporus data → structured code data = a general-purpose coding model
=⇒ We hypothesise large-scale video data → structured 3D data = a general-purpose rendering model

To realise this hypothesis, we reformulate rendering as a sequence-to-sequence problem, specifically as a pose-
conditioned, image-to-image synthesis task. We first establish a unified, geometrically consistent representation
of space and time as the core of our model design. This is achieved with a positional encoding design that
extends the original Rotary Positional Encoding (RoPE) (Su et al., 2021) to parametrise all 2D, 3D, and
temporal positions relatively, within the dot-product self-attention of a transformer (Vaswani et al., 2017).
This foundational design enables Kaleido to learn rich world representations from large-scale, unstructured
video data and then perform efficient transfer learning with much smaller-scale, structured multi-view 3D
data, all within the same model without any task-specific architectural changes.
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Figure 2 Rendering as Sequence-to-Sequence Image Modelling. We propose that neural rendering can be framed as a
sequence-to-sequence task, unifying its design with language and video generation. In this formulation, a transformer
(Vaswani et al., 2017) learns to generate image tokens conditioned on their spatial positions, similar to how language
models condition on token positions in a sequence, and video models condition on temporal positions across frames.

Building on this unified representation, Kaleido naturally benefits from scalable architectures and powerful
generative techniques developed for language and vision. Specifically, Kaleido adopts a scalable transformer
architecture inspired by Diffusion Transformer (DiT) (Peebles and Xie, 2023) and Llama-3 (Dubey et al.,
2024), performing generative modelling via a rectified flow objective (Liu et al., 2022; Esser et al., 2024) within
a masked autoregressive framework (Li et al., 2024b; Fan et al., 2025; Liu et al., 2025a).
Finally, we identify that rectified flow SNR samplers commonly used for text-to-image/video generation are
suboptimal for the precise pose conditioning required in rendering. We therefore introduce an improved,
noise-biased sampling strategy and other key architectural adjustments to ensure stable and efficient scaling.
Through extensive systemic studies, we validate these designs and highlight our primary contributions:

1. We introduce the Kaleido family of Spatial Generative Models (SGMs), which can perform unified object-
and scene-level view synthesis from any number of reference views to any number of target views with
full 6-DoF camera control. This is enabled by the following designs:
(a) A simple decoder-only rectified flow transformer that considers generative rendering as a sequence-

to-sequence task.
(b) A unified positional encoding design that seamlessly processes both 3D and video data within a

single, unchanged architecture.
(c) An effective scaling recipe for both model size and resolution, supported with a tailored SNR

sampler and solutions for training instability.
2. Kaleido generates high-resolution images (up to 1024px) across diverse aspect ratios, achieving state-

of-the-art results on numerous view synthesis and 3D reconstruction benchmarks. Most notably, in
many-view settings, Kaleido is the first zero-shot generative model to match the rendering quality of
per-scene optimisation methods like Instant-NGP (Müller et al., 2022).

2 RelatedWork

From 2D to 3D and Camera Parameters. Reconstructing 3D geometry and camera parameters from 2D images is
a foundational problem in computer vision. Classical approaches like Structure from Motion (SfM) (Hartley
and Zisserman, 2003; Schönberger et al., 2016) and Simultaneous Localisation andMapping (SLAM) (Davison
et al., 2007; Mur-Artal et al., 2015; Izadi et al., 2011) have been highly successful, but they are limited by their
need to optimise each scene from scratch and their struggles with non-overlapping views. More recently,
learning-based methods have emerged to address these limitations. Models like DUSt3R (Wang et al.,
2024) and VGGT (Wang et al., 2025) introduce feed-forward pointmap regression, enabling end-to-end 3D
reconstruction that generalises across scenes. While these methods represent a significant step forward,
their reliance on direct geometric regression means they cannot effectively infer content in occluded regions.
Notably, Kaleido’s fully generative design allows it to predict plausible, spatially consistent content for
occluded regions, a key advantage over both classical and modern regression-based techniques.
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Multi-View Stereo, Neural Rendering, and Novel View Synthesis. Traditional Multi-view Stereo (MVS) (Fu-
rukawa et al., 2015; Schönberger et al., 2016) reconstructs 3D surfaces by triangulating features across multiple
viewpoints. This principle was revolutionised by Neural Radiance Fields (NeRF) (Mildenhall et al., 2020),
which uses volume rendering and coordinate MLPs to achieve photorealistic novel view synthesis. A plethora
of follow-up works have focused on improving the speed and quality of this per-scene optimisation paradigm
(Müller et al., 2022; Fridovich-Keil et al., 2022; Chen et al., 2022; Kerbl et al., 2023). However, these methods
require numerous, dense input views. To handle synthesis from only a few views, a learned prior is necessary.
Early works in this area used category-specific priors and pre-trained image features (Sitzmann et al., 2019;
Yu et al., 2021; Jang and Agapito, 2021), but a performance gap remained compared to scene-specific methods
with dense views. More recently, feed-forward transformer-based models have emerged (Hong et al., 2023;
Jang and Agapito, 2024; Jin et al., 2024), which can directly predict 3D primitives or render novel views
from limited inputs. However, as deterministic models, they still fundamentally struggle with the inherently
probabilistic nature of inferring large, occluded regions.

Generative 3D Modelling and View Synthesis Generative 3D modelling has rapidly evolved from synthesising
isolated objects to composing entire, complex scenes. Pioneering text-to-3D works like Shap-E (Jun and
Nichol, 2023) and Score Distillation Sampling (SDS) based methods like DreamFusion (Poole et al., 2022)
laid the groundwork for single-object synthesis, inspiring a wave of research focused on high-fidelity object
generation (Liang et al., 2024; Tang et al., 2024; Wang et al., 2023b; Shi et al., 2024). More recently, the frontier
has expanded to scene generation, with approaches ranging from procedural construction (Sun et al., 2023;
Raistrick et al., 2023) to direct compositional scene optimisation (Li et al., 2024a). A common thread in many
of these works is the reliance on SDS to refine an explicit 3D representation.
Generative view synthesis models (Liu et al., 2023b,a,d; Shi et al., 2023) have emerged alongside this trend, but
often face their own limitations. These methods typically struggle with multi-view consistency, are designed
for a fixed number of reference (often one) and target views, and frequently rely on the same complex,
two-stage SDS pipelines to enforce geometric coherence. Conversely, Kaleido’s sequence-to-sequence design
naturally handles an arbitrary number of both reference and target views, allowing it to generate spatially
consistent views directly without requiring any post-processing or optimisation stages like SDS.

Sequence-to-Sequence Generative View Synthesis. Our work formulates generative view synthesis as a sequence-
to-sequence modelling problem, built upon a pure transformer architecture. A critical challenge when
applying transformers to this domain is effectively encoding camera positions. Recent advancements have
introduced RoPE-style encodings (Su et al., 2021) to parameterise 6-DoF camera extrinsics, with notable
examples including CaPE (Kong et al., 2024), GTA (Miyato et al., 2024), and also camera intrinsics in a more
recent work (Li et al., 2025). Kaleido builds directly on this direction, leveraging a GTA-based framework to
create a unified representation for both multi-view 3D poses and temporal video positions.
While other sequence-to-sequence methods like CAT3D (Gao et al., 2025), EscherNet (Kong et al., 2024)
and SEVA (Zhou et al., 2025) have shown impressive results, their foundations lie in text-to-image latent
diffusionmodels that use U-Net backbones. This reliance on a convolutional architecture is known to scale less
effectively than pure transformers. Furthermore, thesemodels often require 3D-specific learnable components,
such as Plücker ray encodings for camera poses and a separate vision encoder for reference views. In contrast,
Kaleido adheres to a pure transformer design from first principles, which results in a simpler, cleaner design
that unifies 3D and video modelling, without any 3D-specific architectural modifications.

Generative Video and World Models Kaleido’s methodology is deeply connected to recent advancements
in generative video and the emerging paradigm of world models. The field of video generation has seen
milestone progress with models like OpenAI’s Sora (Brooks et al., 2024) and DeepMind’s Veo (Deepmind,
2024), which have set a new standard for generative realism and temporal consistency. This progress is
largely driven by a dominant technical stack combining diffusion or rectified flow models with transformer
architectures, a foundation shared by many other generative video models (Blattmann et al., 2023; Chen
et al., 2024b,a; Yang et al., 2025). While Kaleido is built upon this same foundation and is pre-trained on
large-scale video data, its goal is not to be a standalone video generator. Instead, it leverages video pre-training
specifically to build a robust world representation for high-fidelity generative rendering.
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The increasing capabilities of video generation have also positioned it as a stepping stone towards building
world models — systems that learn an internal model of the world to simulate physical interactions and
predict future states. This trajectory is evident in models that focus on controllability and interactivity. For
instance, the Navigation World Model (Bar et al., 2025) predicts future observations to facilitate planning,
while frameworks likeWonderWorld (Yu et al., 2025a) and GameFactory (Yu et al., 2025b) generate explorable
3D environments. Most notably, the Genie series (Bruce et al., 2024; Deepmind, 2025) creates interactive
environments with persistent spatial memory and real-time promptable world events, marking a significant
advance toward truly immersive and dynamic virtual worlds.
Kaleido contributes to this broader pursuit of world modelling from a different perspective. Instead of
focusing on temporal dynamics or agent-based interactivity, Kaleido approaches world modelling through
the lens of neural rendering, prioritising spatial consistency and generation flexibility. This unique approach
allows it to operate across a spectrum of realities: with many reference views, it produces a grounded reality
through faithful reconstruction; while with few views, it creates a generated reality with plausible unseen
details. This unique capability to seamlessly transition between reconstruction and creative generation marks
a distinct and intriguing path toward creating truly versatile and navigable virtual worlds.

3 Kaleido: Scaling Rectified Flow Transformers for Generative Rendering

3.1 Background and Notations

Kaleido considers rendering and video generation within a unified sequence-to-sequence framework. The
goal is to estimate the conditional distribution of a set of target views given a set of reference views:

X T ∼ p(X T |X R,PR,PT) (1)
Here, the conditioning set consists of N reference views X R = {xR

i=1:N} and their corresponding positions
PR = {PR

i=1:N}. The target set consists of M target views X T = {xT
j=1:M} and their positions PT = {PT

j=1:M}.
The positions P are defined flexibly depending on their data modality. For 3D data, each P ∈ SE(3) represents
a 6-DoF camera pose. For video data, each P ∈ N represents a temporal position (i.e., a frame index).
This "any-to-any view prediction" can be seen as a form of "next set-of-tokens prediction", which is elegantly
handled by a masked auto-regressive framework (Li et al., 2024b). A key advantage of this approach is its
flexibility: the number of reference views, N, and target views, M, can be arbitrary during both training and
inference. This allows for various inference strategies, such as generating all target views at once or generating
long sequences autoregressively by treating previously generated frames as new reference views. For training
efficiency with batched optimisations, within each iteration, we sample a fixed total of V views, and choose N
reference and M target views such that N + M = V.
Kaleido is a latent rectified flow model (Rombach et al., 2022; Ma et al., 2024; Esser et al., 2024) that operates
on spatially compressed image tokens. We first use a pre-trained VAE (Kingma and Welling, 2014) (with an
8 × 8 compression rate and 16 latent channels) to encode all reference and target images into a latent space:
{ZR,ZT} = E({X R,X T}).
Following the rectified flow formulation (Liu et al., 2023c; Lipman et al., 2023), we then construct a linear
interpolation path between each target latent zT ∈ ZT (from the data distribution p0) and a standard normal
noise latent ϵ ∼ N (0, I) (from the noise distribution p1):

ZT
t = (1 − t)zT + tϵ, where t ∈ [0, 1] and ∀zT ∈ ZT . (2)

A vision transformer (ViT) (Dosovitskiy et al., 2020) then processes the combined sequence of clean reference
latents ZR and noised target latents ZT

t . We tokenise the latents using a patch size of 2 × 2 (for a combined
spatial compression of 16 × 16), which we found provides an optimal trade-off between generation quality
and inference speed. Kaleido is trained with a standard noise-prediction objective (Kingma and Gao, 2023),
applied only to the target latents ZT

t , to estimate a velocity field between p0 and p1, conditioned as defined
in Eq. 1. To analyse the scalability, we present three model variants: Kaleido-Small, Kaleido-Medium, and
Kaleido-Large (Kaleido), with detailed architectures and training strategies introduced next.
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3.2 Kaleido Architecture Details and Training Strategies

In this section, we present a comprehensive ablation study of the Kaleido architecture design and its training
strategies. Our goal is to identify the key design decisions that address the unique scaling challenges of
sequence-to-sequence generative neural rendering. Our main findings are summarised in Fig. 3, with full
quantitative results and explorations of alternative designs detailed in Appendix A. An overview of the final
Kaleido architecture is shown in Fig. 4.
To provide a holistic view of our design process, we conducted a series of controlled experiments. For efficiency,
we used our Kaleido-Small for all ablations, allowing for rapid iteration. We trained each experimental
configuration on two distinct datasets: Objaverse (Deitke et al., 2023b), which contains synthetic objects with
ground-truth camera poses, and uCO3D (Liu et al., 2025b), which contains real-world objects with noisy,
estimated camera poses. Each experiment is trained for 100K optimisation steps on 8× H100 GPUs. We
perform a greedy search over key design choices, organised by the four primary objectives introduced next.

3.2.1 Designing Kaledio’s Design Spaces

We begin by exploring Kaleido’s architectural design spaces and training strategies. Our Kaleido-Small’s
starting point is a vanilla DiT-L/SiT-L architecture (Peebles and Xie, 2023; Ma et al., 2024) within a rectified
flow framework, whose scaling properties have been well established in image and video generation (Esser
et al., 2024; Polyak et al., 2024; Chen et al., 2025).

(i) Improved Architecture Design with Llama 3. We first incorporate recent architectural advances from state-
of-the-art sequence-to-sequence language models like Llama-3 (Dubey et al., 2024). Specifically, we replace
the standard GLU activations in our transformer’s feed-forward layers with SwiGLU (Shazeer, 2020) and
swap multi-head attention (MHA) for the more efficient grouped-query attention (GQA) (Ainslie et al., 2023).
These simple modifications yield consistent performance gains across our experiments without increasing
computational overhead.

(ii) Unified Positional Encoding for Space and Time One of the critical design decisions in Kaleido is a unified
positional encoding that seamlessly represents 2D, 3D, and temporal positions within a single, consistent
design. Specifically, we introduce a parameter-free encoding scheme that extends the principles of RoPE-style
relative encodings (Su et al., 2021) and Geometric Transformation Attention (GTA) (Miyato et al., 2024), which
we adapt and generalise to create a unified representation for space and time. This design allows Kaleido to
process both multi-view 3D and video data without any architectural modifications.
We represent different positions as follows: In 2D image positions, pixel coordinates are mapped to a pair of
angles (θh, θw), representing an element in SO(2)× SO(2), where θh,w ∈ [0, 2π) distributed uniformly from
the top-left to the bottom-right patches; In temporal positions, frame indices are similarly mapped to a single
angle θt ∈ SO(2), with values interpolated linearly from the start to the end of a clip. In 3D camera poses,
6-DoF camera extrinsics c =

[ R t
0 1

] (with rotation R and translation t) are represented as an element in SE(3),
following the design in CaPE (Kong et al., 2024).
This allows us to define a unified geometric attribute g for each image token, depending on its data modality:

For 3D data: g := (θh, θw, c) ∈ SO(2)× SO(2)× SE(3) (3)
For video data: g := (θh, θw, θt) ∈ SO(2)× SO(2)× SO(2). (4)

Within the GTA framework, these components are used to construct a block-diagonal transformation matrix
Pg that is applied to each token’s feature vector v ∈ Rd. The construction of Pg varies for different attention
blocks, allocating the feature dimension d as follows: In Spatial Attention, we apply only the 2D position
embeddings (θh, θw), which are expanded into d/4 distinct frequency bands, with dimensions allocated to
image height and width components based on a 1:1 ratio; In Temporal/3D Attention, the 2D embeddings
(θh, θw) are expanded into d/8 frequency bands. For video data, the temporal embedding θt is expanded into
d/4 frequency bands. For 3D data, the pose embedding c is repeated to fill the remaining dimensions. The
total dimensions are allocated to image height, width, and temporal/3D components based on a 1:1:2 ratio.
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Figure 3 Kaleido Design Ablations. We extensively ablate various architectural designs and training strategies to explore
effective scaling strategies for generative neural rendering. Each ablation experiment was conducted with Kaleido-Small,
trained for 100K steps in total, on a mixture of Objaverse and uCO3D sampled randomly. We report PSNR and training
throughput for each configuration and evaluate performance in two settings: 1 target view conditioned on 5 reference
views, and 5 target views conditioned on 5 reference views. We broadly split our designs into four categories: the Kaleido
architecture design spaces (i–v); scaling stability techniques to handle large activations (vi–vii); training and inference
timestep sampling strategies (viii–ix); and the role of video pre-training (x). The arrow (→) indicates the progression
from our initial baseline design to our final, optimised design choice.

Finally, we normalise the camera translation element t such that its maximum norm across all views in a
given scene is 1. This ensures all positional transformations remain within a bounded range, which we found
is crucial for stable training to handle different scene scales.
Our ablations confirm that this unified design outperforms (more significantly in multi-view settings) both a
simpler baseline (2D RoPE + 3D CaPE without value-transformation) and the Plücker embeddings used in
other leading sequence-to-sequence rendering models (Gao et al., 2025; Zhou et al., 2025; Jin et al., 2024).

(iii) Principled View Sampling Improves Generalisation. The strategy for sampling reference and target views is
an often-overlooked design aspect of sequence-to-sequence rendering models, which are typically trained with a
fixed number of reference and target views (Jin et al., 2024; Kong et al., 2024; Gao et al., 2025). While such
fixed-view training can generalise to other view configurations, we found that performance can be further
improved by adopting a more principled sampling strategy.
Our key insight is that the rendering task becomes easier and more constrained as the number of reference views
increases. Therefore, the training process should place more emphasis on the challenging, less-constrained
scenarios involving fewer reference views. To achieve this, we designed a sampling distribution π(n) where
its probability density halves as the number of reference views n increases, i.e., π(n + 1) = 1

2 π(n), n ≥ 0. We
design an exponential distributionwhich elegantly provides this property:

π(n) = λe−λn, where λ = ln(2) (5)

In each training step, we sample the number of reference views N from this distribution and set the remaining
M = V − N as target views. By combining this with random attention masking, our model is exposed to all
possible combinations of (n, m), n ∈ [1, N], m ∈ [1, M] view pairs, such that n + m ∈ [2, V].
Our experiments show this sampling strategy offers the best trade-off between single- and multi-view condi-
tioning. It significantly outperforms both fixed-view sampling and uniform sampling, which tend to degrade
single-view performance by over-emphasising multi-view settings.

7



Reference Latents
+ DINOv2 Features

Latent Tokeniser

<latexit sha1_base64="qZHGHszwN5q56QdpPipM613n9No="></latexit>→L

Spatial Self-Attention

LayerNorm

<latexit sha1_base64="DDyqV1u5UQLDq9aqCbKV4EHUIwg="></latexit>�

Linear

Scale, Shift

Scale

Diffusion Timestep
(0, 0, t, t)

Temporal Window
Self-Attention

LayerNorm

<latexit sha1_base64="DDyqV1u5UQLDq9aqCbKV4EHUIwg="></latexit>�

Scale, Shift

Scale

SwiGLU

LayerNorm

<latexit sha1_base64="DDyqV1u5UQLDq9aqCbKV4EHUIwg="></latexit>�

Scale, Shift

Scale

Linear

Reshape & Linear

ValueKeyQuery

LinearLinear

Geometric Transform 
Attention

Reshape
[V, (HK), (WK), C] -> [(HW/K^2), K^2V, C]

Query Key Value

MatMul

Scale

SoftMax

MatMul

Target Latents

Concat 
1 Reg.

Concat
1 Reg.

<latexit sha1_base64="/H4jsL8zgk4keVfZWd/R9NyaWZk="></latexit>

SO(2)
<latexit sha1_base64="HWZaz/ipexloNbIb6vaJJdVISoc="></latexit>

SE(3)
<latexit sha1_base64="/H4jsL8zgk4keVfZWd/R9NyaWZk="></latexit>

SO(2)

Image Width Image Height 3D Camera Position

2D RoPE 3D CaPE

3D Data: 2D + 3D Camera Positions

<latexit sha1_base64="CKuTvUE5ftg52SZwcMp9KvfJe+c="></latexit>

P↭

<latexit sha1_base64="z86RkZpSbmWMr8o4JVkC9tuJ0YU="></latexit>

P

<latexit sha1_base64="xTfGMQGmamxUggEKoHxcakPEG3U="></latexit>

P→1
<latexit sha1_base64="xTfGMQGmamxUggEKoHxcakPEG3U="></latexit>

P→1

<latexit sha1_base64="/H4jsL8zgk4keVfZWd/R9NyaWZk="></latexit>

SO(2)
<latexit sha1_base64="/H4jsL8zgk4keVfZWd/R9NyaWZk="></latexit>

SO(2)

Image Width Image Height Video Temporal Position

2D RoPE 1D RoPE

Video Data: 2D + Video Temporal Positions
<latexit sha1_base64="/H4jsL8zgk4keVfZWd/R9NyaWZk=">AAADE3icbVLNbtNAEN6Yv2L+WjhysYgqFQlFdoVKL5WqwgEuEARpKyVRNd6M3VV2vavdcavU8jNwQoJn4Ya48gC8CUfWiSuatiPZO/q+b3Z+dlIjhaM4/tMJbty8dfvOyt3w3v0HDx+trj3ed7q0HAdcS20PU3AoRYEDEiTx0FgElUo8SKevG/7gBK0TuvhMM4NjBXkhMsGBPDT49GFj8/nRajfuxXOLrjpJ63RZa/2jtc7f0UTzUmFBXIJzwyQ2NK7AkuAS63BUOjTAp5Dj0LsFKHTjal5tHa17ZBJl2vqvoGiOXoyoQDk3U6lXKqBjd5lrwOu4YUnZ9rgShSkJC75IlJUyIh01rUcTYZGTnHkHuBW+1ogfgwVOfkBLWZq7DZzppU4qyo0/pIRl2OSZkZpcHa5fhJvmnEHuxRPM/PPMG63ULJVeUVc2T+vKT3n7RfT/39zhkBSIookfzh9wp40ZV2/evY/61pcVhqPztF7uJ6sM0E6Bp+iora6lpUgt2FmVW12ats7r+AkQNsCCJTE9O2fAWn3qegrJN+53Jbm8GVed/c1estXb+viyu7vXbs0Ke8qesQ2WsFdsl71lfTZgnAn2hX1j34OvwY/gZ/BrIQ06bcwTtmTB73/tyAED</latexit>

SO(2)

Figure 4 Kaleido Architecture Design Details. Kaleido is designed with a simple and scalable decoder-only transformer.
It processes a sequence of tokens with clean reference latents (concatenated with their DINOv2 features) and noised
target latents. During training, a single timestep t is sampled per scene and integrated into the network via AdaIN
layers, similar to DiT (Peebles and Xie, 2023). The core of the model consists of repeating blocks of spatial self-attention
(for within-frame interactions) followed by temporal window attention (for cross-frame interactions), and a SwiGLU
feed-forward layer. Within each attention block, we encode a unified positional encoding design based on Geometric
Transformation Attention (GTA) (Miyato et al., 2024), which consistently represents all 2D, 3D, and temporal positions.
This enables the same architecture to be trained on both video and multi-view 3D data without architectural changes.

(iv) Expanded Perception Field with Window Attention Our baseline model processes a token sequence of shape
V × H ×W (a sequence of V image latents with height H and width W) using a standard factorised attention
mechanism: Spatial Attention (within-frame) followed by Temporal Attention (cross-frame). This approach
has a computational complexity of O(H2W2) +O(V2), which is efficient but limits cross-view interactions to a
single token at each spatial location. To improve this, we redesign the Temporal Attention layer by expanding
its receptive field. Instead of attending to a single token across frames, each query token now attends to a
local K × K window around the corresponding spatial location in all other frames. This windowed cross-view
attention design significantly improves feature exchange between views while maintaining computational
efficiency. The complexity only increases by a small, constant factor from O(V2) to O(V2K4), which is far
more scalable than the full attention’s complexity of O(V2H2W2) cost, given that K ≪ H, W.
Our experiments show that this design consistently boosts performance with larger window sizes. In practice,
we use a window size of K = 4 for our Small and Medium models and K = 8 for our Large model.

(v) Integration of Auxiliary Visual Features We study the integration of auxiliary visual features from pre-
trained networks to enhance 3D perception. Our findings show that features from DINOv2 (Oquab et al.,
2024) further improve Kaleido’s depth estimation on in-the-wild images, leading to more accurate renderings.
These pre-trained semantic features performed similarly to, and sometimes slightly better than, pre-computed
depth or surface normals, which encode explicit scene geometry built on top of the same DINOv2 model.
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We also observed that larger DINOv2 models provide additional, albeit marginal, performance gains. Based
on this trade-off, we pair the feature extractor with our model size: we use DINOv2 with ViT-B backbone for
Kaleido-Small and Medium, and DINOv2 with ViT-L backbone for our Large model.

3.2.2 Massive Activations in Rectified Flow Transformers

During our initial scaling experiments with Kaleido, we consistently observed severe instability in training
convergence on high-resolution images. A deeper analysis revealed that this instability arises from massive
activations emerging within the transformer layers.
While massive activations have been studied extensively in autoregressive language models (Sun et al.,
2024) (where they are sometimes called “attention sinks” (Xiao et al., 2024; Gu et al., 2025)) and in visual
representation learning (Darcet et al., 2024), their behaviour within diffusion or rectified flowmodels remains
largely unexplored. In other contexts, they are known to act as attention biases or global information aggregators.
In this section, we provide the first empirical analysis of this issue in the context of rectified flow transformers,
comparing our findings to those observed in LLMs (Sun et al., 2024) and ViTs (Darcet et al., 2024) (illustrated
in Fig. 5). Our key observations are:

1. Similar to the observations in language models, massive activations are very sparse in numbers, with
only a few tokens exhibiting this behaviour (Fig. 5a).

2. The magnitude of these activations grows with model depth. We observe a sudden jump at a middle
layer, after which themagnitude remains constantly high until the final layer. Unlike in languagemodels,
these activations do not diminish towards the end of the model depth.

3. The activation magnitudes in rectified flow transformers are significantly higher than those reported
in other domains. While language transformers report values around 1K-2K and vision transformers
around 200, our activations can reach as high as 15K for 256px resolution and 24K for 512px resolution
(Fig. 5b). These values seem to positively correlate with the number of training tokens and they continue
to grow during training, directly causing precision overflow in our fp16 mixed-precision training.
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(a) Massive activations are very
few in numbers.
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(b) The activations grow faster and
larger with more tokens.

1 6 12 18 24

102

103

104
15192

397.75

238.75

Layer Index

Magnitude
w/o Reg.
w/ 1 Reg.
w/ 8 Reg.
w/ 32 Reg.

(c) The use of learnable registers
effectively reduces massive activations.

Figure 5 Visual Analysis of Massive Activations in a Rectified Flow Transformer. We provide an empirical analysis of massive
activations emerging during training. (a) Visualisation of activation magnitudes across model layers at 100K training
steps, showing they are sparse but grow suddenly at a middle layer. (b) The maximum activation magnitude (measured
at the final layer) grows over training time and correlates positively with image resolution (and thus, number of tokens).
(c) The same training configuration as (a), but with learnable register tokens applied, demonstrating a significant and
consistent reduction in activation magnitudes.

We also found that thesemassive activations emergemost prominently when training on amixture of synthetic
and real-world data. This supports the hypothesis in ViTs that they act as global information aggregators, perhaps
in our context to reconcile the different rendering logic required for synthetic scenes (e.g., maintaining clean/solid
colour backgrounds) and real scenes (e.g., generating semantically consistent textures).
To resolve this instability, we adopted the solution from Sun et al. (2024), appending learnable "register"
tokens to the keys and values in each attention layer. This simple design proved highly effective, consistently
reducing activation magnitudes to a stable level (∼300) for both low and high-resolution training, as shown
in Fig. 5b and 5c. Additionally, our ablation (vii) shows that having 1 register token is already optimal, adding
more provides no benefit and can even degrade performance.
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In ablation (vi), we also explored alternative solutions inspired by recent studies (Bozic et al., 2021; Sun et al.,
2025; Tang et al., 2025), such as removing the scaling factor from the timestep conditioning or removing
timestep conditioning entirely. While these modifications slightly reduced activation magnitudes, they were
far less effective than using register tokens and consistently resulted in lower overall performance.
Finally, we empirically observed that massive activations are a pervasive phenomenon. They appear across all
our model sizes, persist in both diffusion and rectified flow frameworks for image and video generation, and
are independent of the inference timestep or input data. While our register token solution effectively stabilises
training, we believe we have only scratched the surface of understanding this issue in visual generative models.
A deeper analysis could inspire more stable and efficient architectures, which we consider an important
direction for future work.

3.2.3 Tailored Rectified Flow SNR Samplers for Generative Neural Rendering

Prior rectified flow models for text-to-image/video generation (Esser et al., 2024; Polyak et al., 2024) typically
use logit-normal sampling (Atchison and Shen, 1980) to focus on intermediate timesteps t ∈ [0, 1]. However,
we found this approach to be suboptimal for rendering tasks, as generation quality becomes highly sensitive
to the exact inference timesteps chosen, especially near the start (t ≈ 1) and end (t ≈ 0) of the trajectory.
We hypothesise this discrepancy arises from a fundamental difference between generation tasks: Text-
conditioned image and video synthesis explores a vast, unconstrained solution space, whereas image-to-3D
rendering is a highly constrained problem, as the output must be spatially consistent with the provided reference
images. We argue this insight implies that rendering models should focus more heavily on the early, high-noise
timesteps where the initial scene structure is formed.
This motivated our exploration of alternative SNR samplers. To test our hypothesis, we ablate three base
distributions previously explored in SD3 (Esser et al., 2024): Uniform, Logit-Normal, and Mode, and apply
a modulation function: m(t, σ) = σ · t/(1 + (σ − 1) · t) to skew them towards the noise end of the trajectory
(using a shifting factor σ > 1). The resulting probability densities are visualised in Fig. 6.
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Figure6 ProbabilityDensitiesofDifferentTimestepSampler. Wevisualise the PDFs for the samplers evaluated in our ablation
study, where t = 1 is the noise end and t = 0 is the data end. (a) Logit-Normal: The standard baseline, which concentrates
probability mass on the middle of the timestep range and has diminished density near the endpoints; (b) Mode: Similar
to Logit-Normal, but maintains a positive density at the endpoints. (d) Uniform: A standard uniform distribution, which
samples all timesteps with equal probability; (c), (e), and (f) show the Mode and Uniform distributions shifted towards
the high-noise end of the interval to study the effect of noise-biased sampling.
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In ablation (viii), our results clearly show that distributions shifted towards the noise end outperform the
unshifted baselines Logit-Normal and Mode samplers by a large margin, especially in multi-view settings.
This validates our hypothesis that emphasising the early, high-noise timesteps is crucial for view synthesis,
which operates in a highly constrained solution space. While a uniform distribution with a shift factor of
3 performs marginally better than a shift factor of 5, indicating performance was near saturation, we chose
shifted Mode sampling as our final design. This approach provides a superior balance between the critical
early timesteps and the intermediate steps compared to a heavily shifted uniform distribution.
In ablation (ix), we align our inference process with our noise-biased training strategy by adopting a linear-
quadratic sampling schedule. This schedule samples the first half of the timesteps linearly and the second half
quadratically, effectively concentrating more computation on the initial, high-noise part of the trajectory. We
found that this design combination, using a noise-biased sampler for both training and inference, delivered
the single most significant performance improvement across all of our Kaleido design ablations.

3.2.4 Video Pre-training Improves 3D Efficiency

Finally, in ablation (x), we validated our core motivation of treating 3D as a specialised sub-domain of video.
The results confirm that pre-training on video data significantly improves the efficiency of subsequent 3D
fine-tuning. Specifically, we observed that pre-training on large-scale video data for 100K and 200K steps
resulted in 1.3x and 2.0x improvements in 3D training efficiency, respectively. This demonstrates that a more
capable video foundation model directly translates to faster convergence on view synthesis tasks, successfully
concluding our Kaleido design ablations.

3.3 Frame Interpolation as Zero-shot Spatial Upsampler

While many video generation models use a VAE with temporal compression to reduce memory usage, this
method is incompatible with multi-view 3D datasets, which are typically sparsely captured and lack temporal
consistency. Consequently, Kaleido must rely on a standard image-based VAE. This presents a practical
challenge at inference time. When Kaleido renders a dense, video-like sequence from a continuous camera
trajectory, generating every frame of such a sequence solely by Kaleido alone would be computationally
expensive and memory-intensive.
To address this, we train a separate, lightweight frame interpolation model using our video data. This model’s
role is to efficiently generate the intermediate frames between the sparse keyframes rendered by Kaleido. For
this task, we adapt the FiLM architecture (Reda et al., 2022), a deterministic, convolutional model designed for
fast prediction. This two-stage approach, sparse generation by Kaleido followed by deterministic interpolation
by FiLM, mitigates the high memory cost of dense rendering. It effectively emulates the decoding stage of a
temporal VAE, allowing us to produce smooth, high frame-rate video sequences efficiently.

4 Experiments

We designed three variations of our model: Small, Medium, and Large, with increasing parameter counts to
demonstrate the scalability of our architecture. The design choices for each model are summarised in Table 1.
Hereafter, we refer to our largest model simply as Kaleido and the entire collection as the Kaleido family.

Layers Hidden Size Query Heads KVHeads Window Size Aux. Encoder Total Params.

Kaleido-Small 24 1024 16 4 4 DINOv2-B (86M) 653M
Kaleido-Medium 32 1280 20 5 4 DINOv2-B (86M) 1.2B
Kaleido 40 1792 28 7 8 DINOv2-L (300M) 3.1B

Table 1 Kaleido Family Architecture Details. We detail the key hyper-parameters for our three model variants: the number
of layers, hidden embedding size, number of query and key/value heads, the window size used in temporal attention, the
choice of auxiliary DINOv2 encoder, and the total parameter count.
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4.1 Training Configurations and Evaluation Strategy

Training Datasets The Kaleido family is trained on a diverse mixture of object-level and scene-level datasets.
For object-level data, we use ShutterStock 3D, our licensed collection of synthetic 3D meshes, which we
render with object-centric camera poses under varied lighting conditions; and uCO3D (Liu et al., 2025b),
which includes real-world objects with estimated poses. For scene-level data, we combine several datasets:
RealEstate10K (Zhou et al., 2018), which features indoor room scenes; DL3DV (Ling et al., 2024), which
features both indoor and outdoor scenes; and a filtered subset of ShutterStock Video. This licensed video
subset is curated to include only static scenes, and then labelled with a pose estimator VGGT (Wang et al.,
2025).
In summary, our 3D fine-tuning dataset consists of approximately 1.5M object sequences and 2M scene
sequences. For the initial video pre-training stage, we leverage the full, unfiltered Shutterstock Video dataset,
comprising 34M video clips.

Training Strategy Our training process follows a two-stage, progressive-resolution curriculum. First, we
pre-train Kaleido exclusively on video data at a fixed 256px resolution. We then fine-tune on our combined
multi-view 3D datasets, progressively increasing the resolution from 256px to 512px, and finally to 1024px.
In our 1024px fine-tuning, we introduce multi-aspect-ratio training (including 1:1, 4:5, 5:4, 16:9, and 9:16) to
enable flexible resolution generation. Detailed training hyper-parameters can be found in Appendix B.

Evaluation Strategy We evaluate Kaleido on both view synthesis (Section 4.2) and 3D reconstruction bench-
marks (Section 4.3). All evaluation datasets were held out and not used during model training. For all
experiments, we report the zero-shot performance of Kaleido without any per-dataset fine-tuning. Unless
otherwise specified, all generations use a classifier-free guidance scale of 1.5. To ensure a fair comparison
with prior work, the frame interpolation model is not used in these evaluations.

4.2 Results on Novel View Synthesis

Compared to Generative NVS Methods We first evaluate Kaleido’s zero-shot performance on standard novel
view synthesis (NVS) benchmarks. For object-levelNVS,we compare against leading object-specific generative
NVS methods: SV3D (Voleti et al., 2024) and EscherNet (Kong et al., 2024) on three synthetic object-level
datasets: OmniObject3D (OO3D) (Wu et al., 2023), the 30-object subset of GSO (GSO-30) (Downs et al., 2022),
and the multi-object RTMV dataset (Tremblay et al., 2022).
For scene-level NVS, we compare against SEVA (Zhou et al., 2025), the current state-of-the-art general-purpose
generative NVS model, on three scene-level datasets: LLFF (Mildenhall et al., 2019), Mip-NeRF 360 (Barron
et al., 2022), and Tanks and Temples (Knapitsch et al., 2017) datasets. To ensure a fair comparison, we match
our model’s resolution to the baselines, using our 256px checkpoint against EscherNet (evaluated at 256px)
and our 512px checkpoint against SV3D and SEVA (both evaluated at 576px). For single-view evaluations on
scene-level datasets, we address scale ambiguity by sweeping camera translations along each and all axes
(from 0.1 to 2.0) and reporting the best result, following the protocol of SEVA.

OO3D GSO-30 RTMV LLFF Mip-NeRF 360 Tanks and Temples

# Ref. Views 1 1 2 3 5 10 1 2 3 5 10 1 3 1 3 6 1 3 6 9
Eval. Data Type Object Object Multi-Object Scene Scene Scene
Eval. Resolution 512 256 256 512 512 512
Eval. Tar. Views 20 15 10 5 27 35
SoTA Model SV3D EscherNet EscherNet SEVA SEVA SEVA
Results (PSNR↑) 19.28 20.24 22.91 24.09 25.09 25.90 10.56 12.66 13.59 14.52 15.55 14.03 19.48 12.93 15.78 16.70 11.28 12.65 13.80 14.72
Kaleido-Small 19.77 18.58 23.73 26.20 29.11 31.66 13.57 17.18 18.41 19.97 21.75 14.57 19.30 12.75 15.81 17.07 11.40 13.13 14.13 15.20
Kaleido-Medium 20.78 20.32 25.78 28.01 30.74 32.94 13.78 18.07 19.41 21.09 22.73 14.86 20.40 14.17 16.47 17.80 11.36 13.04 14.43 15.47
Kaleido 21.06 20.94 26.31 28.89 31.37 33.74 14.66 18.48 19.69 21.13 23.04 15.34 20.71 13.74 16.78 18.03 11.79 13.20 14.61 15.88

Table2 Zero-shotPSNRPerformancewithGenerativeMethods. Kaleido achieves state-of-the-art NVS performance across all
object- and scene-level benchmarks, with particularly dominant results in many-view settings. Notably, our Kaleido-Small
model consistently matches or outperforms all baselines despite having significantly fewer model parameters.
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In Table 2, our PSNR results demonstrate that even our smallest model, Kaleido-Small (0.6B), performs on par
with or surpasses all baselines across both object and scene-level benchmarks. This is particularly noteworthy
given its efficiency, as it uses less than half the model parameters of SEVA (1.5B) and SV3D (2.3B).
Furthermore, Kaleido exhibits strong positive scaling, with performance consistently improving as model
size increases. Our largest Kaleido model decisively outperforms all competing methods across every dataset,
often by a remarkable margin. The benefits of scaling are most pronounced in multi-view settings, where
Kaleido achieves an incredible +7.8 dB PSNR improvement on GSO-30 (10 views) over EscherNet; and +1.3
dB PSNR improvement on LLFF (3 views) over SEVA. However, we note that both Kaleido and SEVA struggle
on the Tanks and Temples dataset (< 16 PSNRwith 9 views), which features unbounded scenes with extreme
viewpoint changes, highlighting a clear direction for future improvements.

Reference Image Kaleido Generations

Figure 7 In-the-Wild Single-View Rendering with Kaleido. We showcase Kaleido’s zero-shot generative capabilities on
challenging in-the-wild images. From a single input view (first column), Kaleido generates a sequence of photorealistic
novel views along a circular, object-centric camera trajectory. The examples feature complex scenes with diverse objects
and structures, demonstrating Kaleido’s remarkable generalisation and high-fidelity rendering quality.
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A full breakdown of SSIM and LPIPS metrics is provided in Appendix C. For additional qualitative results,
we present high-resolution (1024px) single-view conditioned generations on in-the-wild images in Fig. 7.

Compared to Per-Scene Optimisation Methods Next, we evaluate the upper bound of Kaleido’s rendering
precision when provided with many reference views. For this analysis, we compare against two state-of-the-
art scene-specific optimisation methods: Instant-NGP (Müller et al., 2022) and 3DGaussian Splatting (3DGS)
(Kerbl et al., 2023). As these methods are optimised per-scene, they represent a strong performance ceiling1.
We also include our generative NVS baselines that can accept a flexible number of reference views: EscherNet,
evaluated on the NeRF-Synthetic dataset (Mildenhall et al., 2020) with 256px resolution; and SEVA, evaluated
on the LLFF and Mip-NeRF 360 datasets (Mildenhall et al., 2019; Barron et al., 2022) with 512px resolution.
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Figure 8 PSNR Performance with Per-Scene Optimisation Methods. Kaleido’s performance scales consistently with
more reference views, demonstrating strong zero-shot generalisation despite being trained on 12 fixed total frames. It
significantly outperforms other generative NVS baselines, with the performance gapwidening as more views are provided.
Notably, when given all available reference views, Kaleido surpasses Instant-NGP on both scene-level datasets.

In Fig. 8, we can observe that Kaleido and the other generative baselines (EscherNet, SEVA) initially out-
perform the scene-specific methods when given fewer than 10 reference views. However, a key difference
emerges as more views are added: the performance of the other generative baselines quickly plateaus, while
Kaleido shares the same positive scaling trend as the per-scene optimisation methods, with its performance
continuing to improve. This superior zero-shot view generalisation, despite being trained on only 12 fixed
total views, highlights the advantages of Kaleido’s design and creates a widening performance gap over other
generative models.
When all available reference views are used, Kaleido’s performance on the NeRF-Synthetic dataset is nearly
on par with Instant-NGP. On the more complex LLFF and Mip-NeRF 360 scene datasets, Kaleido surpasses
Instant-NGP, marking the first time a zero-shot generative model has matched the quality of a state-of-the-art,
per-scene optimisation method. Qualitative comparisons are provided in Fig. 9.
Given that per-scene methods can be (very) sensitive to camera coordinate systems and sometimes fail to
converge, Kaleido’s robust, data-driven performance highlights the immense potential of zero-shot solutions
for general-purpose rendering.

4.3 Results on 3DReconstruction

Given Kaleido’s precise multi-view rendering capabilities, high-quality 3D reconstruction can be achieved
by applying an off-the-shelf reconstruction framework to its generated views. In this section, we evaluate
this capability on the GSO-30 dataset. We compare Kaleido against a diverse set of generative models
designed specifically for image-to-3D tasks. These include methods for direct 3D generation like Point-E
(point clouds) (Nichol et al., 2022) and Shape-E (NeRFs) (Jun andNichol, 2023); optimisation-basedmethods
like DreamGaussian (Tang et al., 2024); and view-synthesis-based methods like One-2-3-45 (Liu et al., 2023a)
and SyncDreamer (Liu et al., 2023d).

1For both Instant-NGP and 3DGS, we follow the best practices validated in NVS benchmarking pipelines (Kulhanek and Sattler,
2024), applying hand-tuned pose transformations for each scene and in each dataset to obtain the optimal performance.
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Instant-NGP [5 Views] 3DGS [5 Views] EscherNet [5 Views] Kaleido [5 Views] Ground-Truth

Instant-NGP [10 Views] 3DGS [10 Views] SEVA [10 Views] Kaleido [10 Views] Ground-Truth

Figure 9 Qualitative Comparison on NeRF-Synthetic (256px, top) and LLFF (512px, bottom). With more reference views,
Kaleido demonstrates superior rendering precision compared to other generative baselines, with more accurate texture
details and pose alignment. Furthermore, it avoids the representation-based artefacts sometimes present in the per-scene
optimisation methods, highlighting the robustness of its learned, data-driven prior.

Following the evaluation protocol of SyncDreamer and EscherNet, we perform reconstruction by first using
Kaleido to generate a set of views from pre-defined, object-centric camera poses, and then fitting a surface with
an off-the-shelf surface reconstruction framework. Specifically, we adopt the camera setup from EscherNet,
rendering 36 views by varying the azimuth from 0◦ to 360◦ (in 30◦ increments) at three fixed elevations (-30◦,
0◦, 30◦). These generated views then serve as input for the NeuS2 reconstruction (Wang et al., 2023a). For a
fair comparison, all baseline methods and Kaleido are evaluated at 256px resolution. We also provide results
for Kaleido at 1024px resolution to showcase its high-resolution generation capabilities.
In Table 3, Kaleido again achieves state-of-the-art performance in 3D reconstruction, significantly outper-
forming direct image-to-3D models, our NeuS baseline, and EscherNet.2 The results highlight Kaleido’s
remarkable rendering efficiency and precision. With just 2 reference views, our model has surpassed the
reconstruction quality that EscherNet achieves with 10 views. This superiority is more evident qualitatively
in Fig. 10. Given the same 256px resolution, Kaleido’s generated meshes are significantly better. At 1024px
resolution, the reconstructed textures are incredibly detailed and sharp, appearing close to the ground truth
and suggesting exciting new applications for high-fidelity, few-shot 3D reconstruction.

2We also attempted to evaluate NeuS2 with the same limited input views, but the reconstruction failed to converge for most objects.
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1 View 2 Views 3 Views 5 Views 10 Views
CD↓ VIoU↑ CD↓ VIoU↑ CD↓ VIoU↑ CD↓ VIoU↑ CD↓ VIoU↑

Point-E 0.0447 0.2503 – – – – – – – –
Shape-E 0.0448 0.3762 – – – – – – – –
One-2-3-45 0.0667 0.4016 – – – – – – – –
DreamGaussian 0.0459 0.4531 – – – – – – – –
SyncDreamer 0.0400 0.5220 – – – – – – – –
NeuS – – – – 0.0366 0.5352 0.0245 0.6742 0.0195 0.7264
EscherNet 0.0314 0.5974 0.0215 0.6868 0.0190 0.7189 0.0175 0.7423 0.0167 0.7478
Kaleido 0.0214 0.6800 0.0120 0.7785 0.0113 0.7960 0.0104 0.8082 0.0100 0.8118
Kaleido [1024 Res.] 0.0183 0.7006 0.0118 0.7851 0.0104 0.8053 0.0091 0.8290 0.0086 0.8418

Table 3 3D Reconstruction Performance on GSO-30. We measure reconstruction quality using Chamfer Distance (CD,
lower is better) and Volumetric IoU (VIoU, higher is better). Kaleido clearly surpasses EscherNet by a large margin,
demonstrating 5x greater view efficiency: Kaleido achieves a better reconstruction quality with just two views than
EscherNet does with ten. The quality is further improved when using higher-resolution renderings from Kaleido.

Referece Images EscherNet Kaleido Kaleido [1024 Res.] Ground-Truth

Figure 10 Visualisation of 3D Reconstructions with 3 Reference Views. Kaleido’s precise renderings enable high-fidelity 3D
mesh reconstruction using NeuS2. When leveraging 1024px renderings, the resulting meshes exhibit incredibly detailed
textures, accurately capturing fine features like the numbers on the clock and the intricate patterns on the backpack.
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5 Conclusions, Limitations and FutureWorks

In this paper, we introduced Kaleido, a new family of generative models that redefines neural rendering
as a pure sequence-to-sequence problem, unifying 3D and video modelling. Through extensive ablations,
we progressively modernised the architecture and training strategies, resulting in a model with exceptional
rendering precision and spatial consistency.
Kaleido exhibits strong scaling properties and achieves state-of-the-art performance across a wide range of
view synthesis and 3D reconstruction benchmarks. Most notably, it is the first generative rendering model to
match the quality of per-scene optimisation methods in a zero-shot setting, representing a significant step
towards a universal, general-purpose rendering engine.
Despite its strong performance, Kaleido has several limitations that open exciting avenues for future research:

Texture Flickering and Sticking. In certain challenging scenarios, we observe two main types of visual artefacts
in Kaleido’s generations. Texture flickering can occur in scenes with high-frequency details (e.g., the LLFF
Fern scene), particularly at lower resolutions or when conditioned on very few reference views, i.e. 1 view.
We also occasionally observe texture sticking, where the generated sequence exhibits a non-continuous jump
between frames. Improving spatial consistency in these most challenging settings remains an important
direction for future work.

Fixed Camera Intrinsics. Kaleido currently does notmodel camera intrinsics, which prevents it from generating
effects like dolly-zooms, a capability present in models like SEVA (Zhou et al., 2025). Future work could
explore incorporating intrinsic parameterisation, potentially through another form of RoPE-based positional
encoding designs (Li et al., 2025), to allow for more flexible camera control.

DegradedGenerations with Large Viewpoint Changes. WhileKaleido oftenmaintains excellent spatial consistency,
its generated views can sometimes lack semantic plausibility when the viewpoint change is extreme. This
suggests that while video pre-training builds a strong geometric foundation, it may not provide the diverse
semantic knowledge required for high-fidelity single-image realism. Integrating priors from large-scale
text-to-image/video models could be a promising direction to address this limitation.

Towards Faster Rendering. Kaleido’s generation time scales with the number of input views, and it is far from
real-time. To fully bridge the gap with efficient and fast scene-specific methods like 3D Gaussian Splatting,
future work will focus on improving inference speed through techniques like step distillation or architectural
optimisations.

Towards 4D Generation. Our unified positional encoding for space and time provides a natural foundation
for true 4D generation. A promising future direction is to extend Kaleido to precisely control scenes across
both space and time, enabling generative modelling of dynamic, four-dimensional worlds.
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A Kaleido Design Ablative Quantitative Results

Table 4 presents the full quantitative results supporting the ablation study in Fig. 3, including all alternative
design decisions we explored. To provide a comprehensive comparison, we report performance across three
settings: one-to-five, five-to-one, and five-to-five reference-to-target views.

Objaverse uCO3D Training
Throughput1 → 5 5 → 1 5 → 5 1 → 5 5 → 1 5 → 5

Objaverse - Single Baseline 14.56 19.53 21.23 - - - -
uCO3D - Single Baseline - - - 14.89 19.19 16.97 -
Objaverse + uCO3D - Joint Baseline 12.17 19.10 20.02 14.66 18.71 16.77 160
(i) Architecture Design [Vanilla DiT]
DiT + Llama3 (SwiGLU + GQA) 13.02 20.18 21.23 14.63 19.31 17.27 160
(ii) Spatial Positional Encoding [2D RoPE + 3DCaPE]
RoPE + Plucker 12.18 20.00 20.17 14.75 19.43 17.61 160
GTA [2D RoPE + 3D CaPE] 11.93 21.05 22.03 13.65 20.84 17.54 148
(iii) View Sampling Strategies [Fixed 6->6]
Uniform Sampling w/o Masking 12.18 22.22 21.65 14.22 21.36 18.34 150
Uniform Sampling w/ Masking 14.51 21.00 20.22 14.58 20.37 17.60 150
Exponential Sampling w/ Masking 15.13 21.41 21.11 15.16 20.25 17.83 148
(iv) Temporal Attention Design [Temporal Attention (K=1)]
Full Attention 14.54 22.62 22.40 15.00 20.75 18.28 58
Temporal Window Attention (K = 2) 15.45 21.60 21.04 15.40 20.43 18.15 146
Temporal Window Attention (K = 4) 15.67 22.25 21.79 15.55 20.81 18.45 142
Temporal Window Attention (K = 8) 15.73 22.60 22.54 15.85 21.39 19.15 103
(v) Auxiliary Features [None]
DiNOv2 [DiT-B] 15.86 22.28 21.90 15.81 21.09 18.81 138
DiNOv2 [DiT-L] 16.34 22.65 22.43 15.94 21.24 18.75 135
MetaDepth [DiT-L] 15.82 22.28 22.22 15.76 21.26 18.65 135
MetaNormals [DiT-L] 15.77 22.32 22.11 15.59 21.20 18.85 135
(vi) Timestep Conditioning Design [AdaLN-Zero, Top 1 Act.: 15192]
Shift Only [Top 1 Act.: 6820] 16.07 21.56 21.51 15.97 20.56 18.28 144
No Timestep [Top 1 Act.: 4312.] 16.26 20.85 21.00 16.15 20.38 18.38 148
(vii) Attention Registers [No Registers, Top 1 Act.: 15192]
1 Register [Top 1 Act.: 397.75] 15.93 22.27 22.12 15.77 21.02 19.03 138
8 Registers [Top 1 Act.: 279.75] 15.26 22.04 21.94 15.72 20.75 18.55 138
32 Registers [Top 1 Act.: 238.75] 15.07 21.88 21.54 15.66 20.59 18.27 138
(viii) Timestep Sampling Training Strategy [LogitNorm [0,1]]
Uniform [Shift = 1] 17.58 22.01 21.96 15.90 20.49 18.57 138
Uniform [Shift = 3] 18.27 23.64 23.28 16.39 21.74 19.21 138
Uniform [Shift = 5] 18.43 23.38 23.06 15.90 21.42 18.94 138
Mode [Scale = 0.8] 17.39 22.06 22.08 15.99 20.75 18.68 138
Mode [Scale = 0.8, Shift = 3] 18.19 24.06 23.75 16.03 21.76 19.11 138
(ix) Timestep Sampling Inference Sampling [Linspace [1, 999]]
Trailing [1, 980] 17.95 23.66 23.51 16.70 21.83 19.43 138
LinearQuadratic [1, 999] 18.09 23.87 23.95 17.03 22.15 19.79 138
(x) with Video Pre-training [No video Pre-training]
Video Pre-training 100K Steps (1.3x Eff.) 18.16 24.22 24.30 17.11 22.23 20.10 138
Video Pre-training 200K Steps (2x Eff.) 18.28 24.55 24.60 17.18 22.43 20.15 138

Table 4 Quantitative Results for Kaleido Design Ablations. We report the complete quantitative results (PSNR, higher is
better) corresponding to the ablation study in Fig. 3. Performance is evaluated in one-to-five, five-to-one, and five-to-five
reference-to-target view settings. Our final design choice for each component is marked in red.
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B Additional Details of Kaleido Training Strategies

All Kaleido model variants are trained using the same datasets detailed in Sec. 4.1, with the AdamW optimiser
(Loshchilov and Hutter, 2019) and a weight decay of 0.01. In each training iteration, we randomly sample a
total of 12 frames per sequence. These frames are then partitioned into reference and target views according
to the view sampling strategy in Sec. 3.2.1.
The learning rate is chosen based on the training stage. For the initial video pre-training and the first stage of
3D fine-tuning (both at 256px resolution), we apply a learning rate of 10−4. For the subsequent high-resolution
3D fine-tuning stages (512px and 1024px resolution), we decrease the learning rate to 10−5. To train our
larger models at high resolutions, we incorporate FSDP sharding and activation checkpointing.
Across all stages, we use fp16 mixed-precision training, as we find it crucial for stable training convergence;
while bf16 consistently leads to unstable training. Our largest Kaleido model is trained for two weeks on 512
NVIDIA H100 GPUs. Additional hyper-parameters are listed in Table 5.

Stage 1 (Video data) Stage 2 (3D data) Stage 3 (3D data) Stage 4 (3D data)
[256 × 256] [256 × 256] [512 × 512] [1024 mixed AR]

Batch Size # Steps Batch Size # Steps Batch Size # Steps Batch Size # Steps
Kaleido-Small 1024 700K 1024 300K 256 100K 256 100K
Kaleido-Medium 1024 700K 1024 300K 256 100K 256 100K
Kaleido 2048 700K 2048 500K 256 100K 256 100K

Table 5 Kaleido Training Pipeline. Kaleido’s training follows a multi-stage curriculum. The model is first pre-trained
on a large-scale video dataset and is then fine-tuned on combined multi-view 3D datasets, with the image resolution
progressively increased from 256px up to 1024px. In the final stage, we sample images with mixed aspect ratios to enable
flexible resolution generation. Larger batch sizes are used for our largest Kaleido model to validate scaling laws.

C Additional Results for Few-shot View Synthesis

We provide additional quantitative metrics for our few-view NVS benchmarks. Consistent with the PSNR
results presented in Table 2, Kaleido achieves state-of-the-art SSIM and LPIPS scores across all object- and
scene-level datasets, confirming its superior generative rendering capabilities.

OO3D GSO-30 RTMV LLFF Mip-NeRF 360 Tanks and Temples
# Ref. Views 1 1 2 3 5 10 1 2 3 5 10 1 3 1 3 6 1 3 6 9
Eval. Data Type Object Object Multi-Object Scene Scene Scene
Eval. Resolution 512 256 256 512 512 512
Eval. Tar. Views 20 15 10 5 27 35
SoTA Model SV3D EscherNet EscherNet SEVA SEVA SEVA
Results (LPIPS↓) 0.158 0.095 0.064 0.052 0.043 0.036 0.410 0.301 0.258 0.222 0.185 0.389 0.181 0.573 0.364 0.319 0.571 0.463 0.387 0.328
Kaleido-Small 0.144 0.123 0.061 0.043 0.029 0.019 0.332 0.204 0.166 0.130 0.095 0.323 0.152 0.528 0.376 0.318 0.549 0.449 0.385 0.328
Kaleido-Medium 0.126 0.094 0.048 0.034 0.023 0.015 0.329 0.181 0.145 0.109 0.080 0.315 0.127 0.473 0.347 0.290 0.508 0.437 0.359 0.302
Kaleido 0.121 0.086 0.044 0.030 0.021 0.013 0.289 0.171 0.137 0.105 0.074 0.301 0.123 0.530 0.344 0.286 0.541 0.465 0.363 0.288
Results (SSIM↑) 0.850 0.884 0.908 0.918 0.927 0.935 0.518 0.585 0.611 0.633 0.657 0.384 0.602 0.282 0.377 0.395 0.342 0.385 0.427 0.452
Kaleido-Small 0.873 0.867 0.919 0.938 0.954 0.969 0.584 0.670 0.703 0.746 0.800 0.341 0.574 0.221 0.313 0.362 0.313 0.359 0.403 0.444
Kaleido-Medium 0.880 0.885 0.933 0.948 0.963 0.975 0.591 0.697 0.731 0.778 0.827 0.359 0.645 0.271 0.347 0.410 0.351 0.359 0.419 0.459
Kaleido 0.884 0.895 0.938 0.954 0.966 0.978 0.610 0.704 0.738 0.781 0.836 0.375 0.659 0.248 0.361 0.433 0.333 0.368 0.429 0.479

Table 6 Zero-shot SSIM/LPIPS Performance with GenerativeMethods. Kaleido achieves state-of-the-art performance across
all object- and scene-level benchmarks, with SSIM and LPIPS metrics consistent with the superior PSNR performance
reported in Table 2.
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